110 research outputs found

    Interactive Camera Network Design using a Virtual Reality Interface

    Full text link
    Traditional literature on camera network design focuses on constructing automated algorithms. These require problem specific input from experts in order to produce their output. The nature of the required input is highly unintuitive leading to an unpractical workflow for human operators. In this work we focus on developing a virtual reality user interface allowing human operators to manually design camera networks in an intuitive manner. From real world practical examples we conclude that the camera networks designed using this interface are highly competitive with, or superior to those generated by automated algorithms, but the associated workflow is much more intuitive and simple. The competitiveness of the human-generated camera networks is remarkable because the structure of the optimization problem is a well known combinatorial NP-hard problem. These results indicate that human operators can be used in challenging geometrical combinatorial optimization problems given an intuitive visualization of the problem.Comment: 11 pages, 8 figure

    One-shot Feature-Preserving Point Cloud Simplification with Gaussian Processes on Riemannian Manifolds

    Full text link
    The processing, storage and transmission of large-scale point clouds is an ongoing challenge in the computer vision community which hinders progress in the application of 3D models to real-world settings, such as autonomous driving, virtual reality and remote sensing. We propose a novel, one-shot point cloud simplification method which preserves both the salient structural features and the overall shape of a point cloud without any prior surface reconstruction step. Our method employs Gaussian processes with kernels defined on Riemannian manifolds, allowing us to model the surface variation function across any given point cloud. A simplified version of the original cloud is obtained by sequentially selecting points using a greedy sparsification scheme. The selection criterion used for this scheme ensures that the simplified cloud best represents the surface variation of the original point cloud. We evaluate our method on several benchmark datasets, compare it to a range of existing methods and show that our method is competitive both in terms of empirical performance and computational efficiency.Comment: 10 pages, 5 figure

    How to turn your camera into a perfect pinhole model

    Full text link
    Camera calibration is a first and fundamental step in various computer vision applications. Despite being an active field of research, Zhang's method remains widely used for camera calibration due to its implementation in popular toolboxes. However, this method initially assumes a pinhole model with oversimplified distortion models. In this work, we propose a novel approach that involves a pre-processing step to remove distortions from images by means of Gaussian processes. Our method does not need to assume any distortion model and can be applied to severely warped images, even in the case of multiple distortion sources, e.g., a fisheye image of a curved mirror reflection. The Gaussian processes capture all distortions and camera imperfections, resulting in virtual images as though taken by an ideal pinhole camera with square pixels. Furthermore, this ideal GP-camera only needs one image of a square grid calibration pattern. This model allows for a serious upgrade of many algorithms and applications that are designed in a pure projective geometry setting but with a performance that is very sensitive to nonlinear lens distortions. We demonstrate the effectiveness of our method by simplifying Zhang's calibration method, reducing the number of parameters and getting rid of the distortion parameters and iterative optimization. We validate by means of synthetic data and real world images. The contributions of this work include the construction of a virtual ideal pinhole camera using Gaussian processes, a simplified calibration method and lens distortion removal.Comment: 15 pages, 3 figures, conference CIAR

    Assessment and treatment of visuospatial neglect using active learning with Gaussian processes regression

    Full text link
    Visuospatial neglect is a disorder characterised by impaired awareness for visual stimuli located in regions of space and frames of reference. It is often associated with stroke. Patients can struggle with all aspects of daily living and community participation. Assessment methods are limited and show several shortcomings, considering they are mainly performed on paper and do not implement the complexity of daily life. Similarly, treatment options are sparse and often show only small improvements. We present an artificial intelligence solution designed to accurately assess a patient's visuospatial neglect in a three-dimensional setting. We implement an active learning method based on Gaussian process regression to reduce the effort it takes a patient to undergo an assessment. Furthermore, we describe how this model can be utilised in patient oriented treatment and how this opens the way to gamification, tele-rehabilitation and personalised healthcare, providing a promising avenue for improving patient engagement and rehabilitation outcomes. To validate our assessment module, we conducted clinical trials involving patients in a real-world setting. We compared the results obtained using our AI-based assessment with the widely used conventional visuospatial neglect tests currently employed in clinical practice. The validation process serves to establish the accuracy and reliability of our model, confirming its potential as a valuable tool for diagnosing and monitoring visuospatial neglect. Our VR application proves to be more sensitive, while intra-rater reliability remains high

    Relative centers of motion, implicit bars and dead-center positions for planar mechanisms

    Get PDF
    AbstractThis paper characterizes the dead-center positions of a planar mechanism in terms of implicit bars, that can be described in their turn in terms of relative motion centers. Consequently, a graphical procedure for finding motion centers leads to a geometric description for dead-point positions. We give a survey of existing geometric constructions for motion centers, and we illustrate a new technique that makes use of the “Baracs construction”
    • …
    corecore